Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.123
Filtrar
1.
Chin Med Sci J ; 39(1): 19-28, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38623048

RESUMO

Objective As primary Sj?gren's syndrome (pSS) primarily affects the salivary glands, saliva can serve as an indicator of the glands' pathophysiology and the disease's status. This study aims to illustrate the salivary proteomic profiles of pSS patients and identify potential candidate biomarkers for diagnosis.Methods The discovery set contained 49 samples (24 from pSS and 25 from age- and gender-matched healthy controls [HCs]) and the validation set included 25 samples (12 from pSS and 13 from HCs). Totally 36 pSS patients and 38 HCs were centrally randomized into the discovery set or to the validation set at a 2:1 ratio. Unstimulated whole saliva samples from pSS patients and HCs were analyzed using a data-independent acquisition (DIA) strategy on a 2D LC?HRMS/MS platform to reveal differential proteins. The crucial proteins were verified using DIA analysis and annotated using gene ontology (GO) and International Pharmaceutical Abstracts (IPA) analysis. A prediction model for SS was established using random forests.Results A total of 1,963 proteins were discovered, and 136 proteins exhibited differential representation in pSS patients. The bioinformatic research indicated that these proteins were primarily linked to immunological functions, metabolism, and inflammation. A panel of 19 protein biomarkers was identified by ranking order based on P-value and random forest algorichm, and was validated as the predictive biomarkers exhibiting good performance with area under the curve (AUC) of 0.817 for discovery set and 0.882 for validation set.Conclusions The candidate protein panel discovered may aid in pSS diagnosis. Salivary proteomic analysis is a promising non-invasive method for prognostic evaluation and early and precise treatments for pSS patients. DIA offers the best time efficiency and data dependability and may be a suitable option for future research on the salivary proteome.


Assuntos
Síndrome de Sjogren , Humanos , Síndrome de Sjogren/diagnóstico , Síndrome de Sjogren/metabolismo , Proteômica/métodos , Biomarcadores/metabolismo , Saliva/metabolismo , Prognóstico
2.
Immun Inflamm Dis ; 12(4): e1244, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38577997

RESUMO

OBJECTIVES: The purpose of this study was to examine the proportion of CD161 on CD56+ natural killer (NK) cells in peripheral blood of primary Sjögren's syndrome (pSS) and investigate its clinical relevance of pSS. METHODS: The proportion of CD56+ NK cells and CD161 on CD56+ NK cells was detected by flow cytometry in 31 pSS patients and 29 healthy controls (HCs). The correlations between the proportion of CD161+CD56+ NK cells and clinical features and disease activity of pSS were further analyzed. Meanwhile, we drew the receiver operating characteristic curve to evaluate the diagnostic value of CD161+CD56+ NK cells in pSS. In addition, we evaluated the differences in the effects of CD161+ cells and CD161- cells in peripheral blood on the function of CD56+ NK cells in 5 pSS patients. RESULTS: The proportion of CD56+ NK cells and CD161+CD56+ NK cells decreased markedly in pSS patients compared to HCs. The correlation analysis showed that the proportion of CD161+CD56+ NK cells negatively correlated with white blood cells, Immunoglobulin A (IgA), IgM, IgG, European League Against Rheumatism Sjogren's Syndrome Patient Reported Index and European League Against Rheumatism Sjogren's Syndrome Disease Activity Index, and positively correlated with complement C4. The proportion of CD161+CD56+ NK cells in pSS patients with decayed tooth, fatigue, arthralgia, skin involvement, primary biliary cirrhosis, interstitial lung disease, anti-SSA/Ro60 positive, anti-SSB positive and high IgG was lower than that in negative patients. Furthermore, compared with inactive patients, the proportion of CD161+CD56+ NK cells decreased obviously in active patients. The area under the curve was 0.7375 (p = .0016), the results indicated that CD161+CD56+ NK cells had certain diagnostic values for pSS. In addition, the proportion of CD86, HLA-DR, Ki67, FasL, TNF-α, and IFN-γ on CD161+CD56+ NK cells was lower than that on CD161-CD56+ NK cells in the peripheral blood of pSS patients. CONCLUSION: This study suggested that the proportion of CD56+ NK cells and CD161+CD56+ NK cells decreased significantly in pSS patients, and the proportion of CD161+CD56+ NK cells negatively associated with the clinical features and disease activity of pSS patients. CD161 expression inhibited the function of CD56+ NK cells in peripheral blood of pSS patients. The CD161+CD56+ NK cells may present as a potential target for therapy and a biomarker of disease activity in pSS.


Assuntos
Células Matadoras Naturais , Síndrome de Sjogren , Humanos , Biomarcadores , Antígenos HLA-DR , Imunoglobulina G , Células Matadoras Naturais/metabolismo , Síndrome de Sjogren/diagnóstico , Síndrome de Sjogren/metabolismo
3.
Front Immunol ; 15: 1349067, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495880

RESUMO

The oral cavity presents a diverse microbiota in a dynamic balance with the host. Disruption of the microbial community can promote dysregulation of local immune response which could generate oral diseases. Additionally, alterations in host immune system can result in inflammatory disorders. Different microorganisms have been associated with establishment and progression of the oral diseases. Oral cavity pathogens/diseases can modulate components of the inflammatory response. Myeloid-derived suppressor cells (MDSCs) own immunoregulatory functions and have been involved in different inflammatory conditions such as infectious processes, autoimmune diseases, and cancer. The aim of this review is to provide a comprehensive overview of generation, phenotypes, and biological functions of the MDSCs in oral inflammatory diseases. Also, it is addressed the biological aspects of MDSCs in presence of major oral pathogens. MDSCs have been mainly analyzed in periodontal disease and Sjögren's syndrome and could be involved in the outcome of these diseases. Studies including the participation of MDSCs in other important oral diseases are very scarce. Major oral bacterial and fungal pathogens can modulate expansion, subpopulations, recruitment, metabolism, immunosuppressive activity and osteoclastogenic potential of MDSCs. Moreover, MDSC plasticity is exhibited in presence of oral inflammatory diseases/oral pathogens and appears to be relevant in the disease progression and potentially useful in the searching of possible treatments. Further analyses of MDSCs in oral cavity context could allow to understand the contribution of these cells in the fine-tuned balance between host immune system and microorganism of the oral biofilm, as well as their involvement in the development of oral diseases when this balance is altered.


Assuntos
Doenças Autoimunes , Células Supressoras Mieloides , Neoplasias , Síndrome de Sjogren , Humanos , Doenças Autoimunes/metabolismo , Síndrome de Sjogren/metabolismo
4.
Biol Pharm Bull ; 47(1): 138-144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38171773

RESUMO

Sjögren's syndrome (SS) is an autoimmune disorder characterized by oral dryness that is primarily attributed to tumor necrosis factor alpha (TNF-α)-mediated reduction in saliva production. In traditional Chinese medicine, goji berries are recognized for their hydrating effect and are considered suitable to address oral dryness associated with Yin deficiency. In the present study, we used goji berry juice (GBJ) to investigate the potential preventive effect of goji berries on oral dryness caused by SS. Pretreatment of human salivary gland cells with GBJ effectively prevented the decrease in aquaporin-5 (AQP-5) mRNA and protein levels induced by TNF-α. GBJ also inhibited histone H4 deacetylation and suppressed the generation of intracellular reactive oxygen species (ROS). Furthermore, GBJ pretreatment reserved mitochondrial membrane potential and suppressed the upregulation of Bax and caspase-3, indicating that GBJ exerted an antiapoptotic effect. These findings suggest that GBJ provides protection against TNF-α in human salivary gland cells and prevents the reduction of AQP-5 expression on the cell membrane. Altogether, these results highlight the potential role of GBJ in preventing oral dryness caused by SS.


Assuntos
Lycium , Síndrome de Sjogren , Xerostomia , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Lycium/metabolismo , Glândulas Salivares/metabolismo , Glândulas Salivares/patologia , Xerostomia/induzido quimicamente , Xerostomia/prevenção & controle , Xerostomia/complicações , Síndrome de Sjogren/complicações , Síndrome de Sjogren/metabolismo , Síndrome de Sjogren/patologia , Aquaporina 5/genética
5.
Int Immunopharmacol ; 128: 111485, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38183912

RESUMO

BACKGROUND: Primary Sjögren's syndrome (pSS) is a chronic systemic autoimmune disease. There is no relevant research on whether the migratory ability of bone marrow mesenchymal stem cells (BM-MSC) is impaired in patients with pSS (pSS-BMMSC). METHODS: Trajectories and velocities of BM-MSC were analyzed. Transwell migration assay and wound healing assay were used to investigate the migratory capacity of BM-MSC. The proliferative capacity of BM-MSC was evaluated by EDU and CCK8 assay. RNA-seq analysis was then performed to identify the underlying mechanism of lentivirus-mediated cofilin-1 overexpression BM-MSC (BMMSCCFL1). The therapeutic efficacy of BMMSCCFL1 was evaluated in NOD mice. RESULTS: The migratory capacity of pSS-BMMSC was significantly reduced compared to normal volunteers (HC-BMMSC). The expression of the motility-related gene CFL1 was decreased in pSS-BMMSC. Lentivirus-mediated CFL1 overexpression of pSS-BMMSC promoted the migration capacity of pSS-BMMSC. Furthermore, RNA-seq revealed that CCR1 was the downstream target gene of CFL1. To further elucidate the mechanism of CFL1 in regulating BM-MSC migration and proliferation via the CCL5/CCR1 axis, we performed a rescue experiment using BX431 (a CCR1-specific inhibitor) to inhibit CCR1. The results showed that CCR1 inhibitors suppressed the migration and proliferation capacity of MSC induced by CFL1. CONCLUSION: The pSS-BMMSC leads to impaired migration and proliferation, and overexpression of CFL1 can rescue the functional deficiency and alleviate disease symptoms in NOD mice. Mechanically, CFL1 can regulate the expression level of the downstream CCL5/CCR1 axis to enhance the migration and proliferation of BM-MSC.


Assuntos
Células-Tronco Mesenquimais , Síndrome de Sjogren , Camundongos , Animais , Humanos , Camundongos Endogâmicos NOD , Síndrome de Sjogren/metabolismo , Cicatrização , Células-Tronco Mesenquimais/metabolismo , Células da Medula Óssea/metabolismo , Cofilina 1/metabolismo , Receptores CCR1/genética , Receptores CCR1/metabolismo
6.
Cell Signal ; 113: 110980, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37981065

RESUMO

Previous studies have demonstrated that extracellular vesicles (EVs) from dental pulp stem cells (DPSCs), which release abundant hepatocyte growth factor (HGF) and transforming growth factor-ß1 (TGF-ß1), contribute to the pathogenesis of Sjögren's syndrome (SS). However, depending on the condition of DPSCs, this effect is often not achieved. In this study, we established induced pluripotent stem (iPS) cells highly capable of releasing HGF and TGF-ß1 and iPS cells barely capable of releasing them, and administered each EV to SS model mice to see if there was a difference in therapeutic effect. EVs were collected from each iPS cell and their characteristics and shapes were examined. When they were administered to SS model mice, the EVs from iPS cells with higher concentrations of HGF and TGF-ß1 showed significantly reduced inflammatory cell infiltration in salivary gland tissues, increased saliva volume, and decreased anti-SS-A and anti-SS-B antibodies. A comprehensive search of microRNA arrays for differences among those EVs revealed that EVs from iPS cells with higher concentrations of HGF and TGF-ß1 contained more of the let-7 family. Thereafter, we examined the expression of toll-like receptors (TLRs), which are said to be regulated by the let-7 family, by qPCR, and found decreased TLR4 expression. Focusing on MAPK, a downstream signaling pathway, we examined cytokine concentrations in mouse macrophage culture supernatants and Western blotting of murine splenic tissues and found higher concentrations of anti-inflammatory cytokines in the EVs-treated group and decreased TLR4, NF-κB and phosphorylation (p)-p-38 MAPK expression by Western blotting. Alternatively, p-Smad2/3 was upregulated in the EVs-treated group. Our findings suggest that the let-7 family in EVs may suppress the expression of TLR4 and NF-κB, which may be involved in the suppression of MAPK-mediated pro-inflammatory cytokine production.


Assuntos
Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , Síndrome de Sjogren , Animais , Camundongos , Vesículas Extracelulares/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Imunidade Inata , Células-Tronco Pluripotentes Induzidas/metabolismo , NF-kappa B/metabolismo , Síndrome de Sjogren/metabolismo , Síndrome de Sjogren/patologia , Receptor 4 Toll-Like/metabolismo , Fator de Crescimento Transformador beta1
7.
Genomics ; 116(1): 110767, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38128705

RESUMO

OBJECTIVE: Primary Sjögren's syndrome (pSS) is a intricate autoimmune disease mainly characterized of immune-mediated destruction of exocrine tissues, such as salivary and lacrimal glands, occurring dry mouth and eyes. Although some breakthroughs in understanding pSS have been uncovered, many questions remain about its pathogenesis, especially the internal relations between exocrine glands and secretions. METHOD: Transcriptomic and proteomic analyses were conducted on salivary tissues and saliva in experimental Sjögren syndrome (ESS). The ESS model was established by immunization with salivary gland protein. The expression of mRNAs and proteins in salivary tissues and saliva were determined by high-throughput sequencing transcriptomic analysis and LC-MS/MS-based proteome, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used to recognize dysregulated genes and proteins. The association between RNA and protein abundance was investigated to provides a comprehensive understanding of RNA-protein correlations in the pathogenesis of pSS. RESULTS: As a result, we successfully established the ESS model. We recognized 3221 differentially expressed genes (DEGs) and 253 differentially expressed proteins (DEPs). The sample analysis showed that 61 proteins overlapped through the integrative analysis of transcriptomics and proteomics data. The enrichment pathway analysis of DEGs and DEPs in samples showed alterations in renin-angiotensin-system (RAS), lysosome, and apoptosis. Notably, we found that some genes, such as AGT, FN1, Klk1b26, Klk1, Klk1b5, Klk1b3 had a consistent trend in the regulation at the RNA and protein levels and might be potential diagnostic biomarkers of pSS. CONCLUSION: Herein, we found critical processes and potential biomakers that may contribute to pSS pathogenesis by analyzing dysregulated genes and pathways. Additionally, the integrative multi-omics datasets provided additional insight into understanding complicated disease mechanisms.


Assuntos
Síndrome de Sjogren , Humanos , Síndrome de Sjogren/genética , Síndrome de Sjogren/diagnóstico , Síndrome de Sjogren/metabolismo , Transcriptoma , Proteoma/genética , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , RNA
8.
NPJ Syst Biol Appl ; 9(1): 62, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102122

RESUMO

Systemic lupus erythematosus (SLE) and primary Sjögren's syndrome (pSS) share clinical as well as pathogenic similarities. Although previous studies suggest various abnormalities in different immune cell compartments, dedicated cell-type specific transcriptomic signatures are often masked by patient heterogeneity. Here, we performed transcriptional profiling of isolated CD4, CD8, CD16 and CD19 lymphocytes from pSS and SLE patients upon T cell stimulation, in addition to a steady-state condition directly after blood drawing, in total comprising 581 sequencing samples. T cell stimulation, which induced a pronounced inflammatory response in all four cell types, gave rise to substantial re-modulation of lymphocyte subsets in the two autoimmune diseases compared to healthy controls, far exceeding the transcriptomic differences detected at steady-state. In particular, we detected cell-type and disease-specific down-regulation of a range of pro-inflammatory cytokine and chemokine pathways. Such differences between SLE and pSS patients are instrumental for selective immune targeting by future therapies.


Assuntos
Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Síndrome de Sjogren , Humanos , Síndrome de Sjogren/genética , Síndrome de Sjogren/metabolismo , Linfócitos T/metabolismo , Regulação para Baixo/genética , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo
9.
Clin Exp Rheumatol ; 41(12): 2538-2546, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38149514

RESUMO

The link between immune cell function and cell metabolic reprogramming is currently known under the term "immunometabolism". Similarly to the Warburg's effect described in cancer cells, in activated immune cells an up-regulation of specific metabolic pathways has been described and seems to be pathogenic in different inflammatory conditions.SjÓ§gren's syndrome (SS) is a systemic autoimmune disease that affects the exocrine glands and is characterised by a progressive loss of secretory function. Despite the increasing amount of evidence on the ability of metabolism in regulating cell behaviour in inflammatory or tumoral conditions, the field of metabolism in SS is still for the most part unexplored.The aim of this review is to summarise currently available studies evaluating cell metabolism in SS with a particular focus on the possible pathogenic role of metabolic changes in immune and non-immune cells in this condition.


Assuntos
Síndrome de Sjogren , Humanos , Síndrome de Sjogren/metabolismo , Síndrome de Sjogren/patologia
10.
Immun Inflamm Dis ; 11(12): e1102, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38156384

RESUMO

OBJECTIVE: There are new evidences that protein arginine methyltransferase 5 (PRMT5) is widely involved in the progression of various diseases, but its effect is unclear on Primary Sjogren's syndrome (pSS). The main purpose of this study is to explore the regulatory effect of PRMT5 on pSS and its potential mechanisms. METHODS: CD40L treated CD19 + B cells to construct a cell model of pSS. CCK-8 assay and Annexin V-FITC/PI kits were used to measure cell proliferation and apoptosis. ELISA assay was used to determine the contents of IL-6 and TNF-α in CD19 + B cells. And commercial kits were used to detect the levels of immunoglobins (IgG, IgM, and IgA) in CD40L-treated CD19 + B cells. And successfully constructed a pSS mouse model. RESULTS: The results revealed an increase in the expression of PRMT5 in CD19 + B cells from patients with pSS. After CD40L treatment, the knockdown of PRMT5 prominently decreased cell viability, the production level of immunoglobulins (IgG, IgM, and IgA), and the content of IL-10, increased the content of IL-6 and IL-8, and promoted the apoptosis of pSS CD19 + B cells. Mechanistically, PRMT5 negatively regulated the RSAD2 and nuclear factor kappa-B (NF-κB) signaling pathway. Furthermore, overexpression of RSAD2 and p65 significantly rescued the effect of PRMT5 knockdown on proliferation, immunoglobin production and secreting cytokines in CD40L-treated CD19 + B cells. More importantly, inhibition of PRMT5 significantly inhibited the symptoms of pSS mice. CONCLUSIONS: Low-expression of PRMT5 through inactivation of RSAD2/NF-κB signalling pathway alleviates the hyperactivity of B cells, which may provide theoretical basis and potential therapeutic targets for clinical treatment of pSS.


Assuntos
NF-kappa B , Síndrome de Sjogren , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Síndrome de Sjogren/metabolismo , Interleucina-6 , Ligante de CD40 , Transdução de Sinais , Imunoglobulina A , Imunoglobulina G , Imunoglobulina M , Proteína Viperina , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo
11.
Proc Natl Acad Sci U S A ; 120(42): e2311983120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812717

RESUMO

The lacrimal gland is of central interest in ophthalmology both as the source of the aqueous component of tear fluid and as the site of autoimmune pathology in the context of Sjogren's syndrome (SjS). To provide a foundational description of mouse lacrimal gland cell types and their patterns of gene expression, we have analyzed single-cell transcriptomes from wild-type (Balb/c) mice and from two genetically based SjS models, MRL/lpr and NOD (nonobese diabetic).H2b, and defined the localization of multiple cell-type-specific protein and mRNA markers. This analysis has uncovered a previously undescribed cell type, Car6+ cells, which are located at the junction of the acini and the connecting ducts. More than a dozen secreted polypeptides that are likely to be components of tear fluid are expressed by acinar cells and show pronounced sex differences in expression. Additional examples of gene expression heterogeneity within a single cell type were identified, including a gradient of Claudin4 along the length of the ductal system and cell-to-cell heterogeneity in transcription factor expression within acinar and myoepithelial cells. The patterns of expression of channels, transporters, and pumps in acinar, Car6+, and ductal cells make strong predictions regarding the mechanisms of water and electrolyte secretion. In MRL/lpr and NOD.H2b lacrimal glands, distinctive changes in parenchymal gene expression and in immune cell subsets reveal widespread interferon responses, a T cell-dominated infiltrate in the MRL/lpr model, and a mixed B cell and T cell infiltrate in the NOD.H2b model.


Assuntos
Aparelho Lacrimal , Síndrome de Sjogren , Feminino , Camundongos , Masculino , Animais , Síndrome de Sjogren/metabolismo , Aparelho Lacrimal/metabolismo , Camundongos Endogâmicos MRL lpr , Camundongos Endogâmicos NOD , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
12.
Chem Senses ; 482023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37586060

RESUMO

Smell detection depends on nasal airflow, which can make absorption of odors to the olfactory epithelium by diffusion through the mucus layer. The odors then act on the chemo-sensitive epithelium of olfactory sensory neurons (OSNs). Therefore, any pathological changes in the olfactory area, for instance, dry nose caused by Sjögren's Syndrome (SS) may interfere with olfactory function. SS is an autoimmune disease in which aquaporin (AQP) 5 autoantibodies have been detected in the serum. However, the expression of AQP5 in olfactory mucosa and its function in olfaction is still unknown. Based on the study of the expression characteristics of AQP5 protein in the nasal mucosa, the olfaction dysfunction in AQP5 knockout (KO) mice was found by olfactory behavior analysis, which was accompanied by reduced secretion volume of Bowman's gland by using in vitro secretion measure system, and the change of acid mucin in nasal mucus layer was identified. By excluding the possibility that olfactory disturbance was caused by changes in OSNs, the result indicated that AQP5 contributes to olfactory functions by regulating the volume and composition of OE mucus layer, which is the medium for the dissolution of odor molecules. Our results indicate that AQP5 can affect the olfactory functions by regulating the water supply of BGs and the mucus layer upper the OE that can explain the olfactory loss in the patients of SS, and AQP5 KO mice might be used as an ideal model to study the olfactory dysfunction.


Assuntos
Transtornos do Olfato , Síndrome de Sjogren , Camundongos , Humanos , Animais , Olfato , Mucosa Olfatória/metabolismo , Síndrome de Sjogren/metabolismo , Síndrome de Sjogren/patologia , Aquaporina 5/genética , Aquaporina 5/metabolismo , Transtornos do Olfato/genética , Transtornos do Olfato/metabolismo
13.
Clin Chim Acta ; 548: 117503, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37536520

RESUMO

Saliva is a versatile biofluid that contains a wide variety of biomarkers reflecting both physiologic and pathophysiologic states. Saliva collection is noninvasive and highly applicable for tests requiring serial sampling. Furthermore, advances in test accuracy, sensitivity and precision for saliva has improved diagnostic performance as well as the identification of novel markers especially in oral disease processes. These include dental caries, periodontitis, oral squamous cell carcinoma (OSCC) and Sjögren's syndrome (SS). Numerous growth factors, enzymes, interleukins and cytokines have been identified and are the subject of much research investigation. This review highlights current procedures for successful determination of saliva biomarkers including preanalytical factors associated with sampling, storage and pretreatment as well as subsequent analysis. Moreover, it provides an overview of the diagnostic applications of these salivary biomarkers in common oral diseases.


Assuntos
Carcinoma de Células Escamosas , Cárie Dentária , Neoplasias Bucais , Síndrome de Sjogren , Humanos , Saliva/química , Neoplasias Bucais/metabolismo , Carcinoma de Células Escamosas/patologia , Biomarcadores/metabolismo , Síndrome de Sjogren/metabolismo , Biomarcadores Tumorais/metabolismo
14.
J Proteomics ; 287: 104977, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37482272

RESUMO

Primary Sjogren's Syndrome (pSS) is a chronic autoimmune disease, with unclear pathogenies. Lysine-malonylation (Kmal) as a novel post-translational modification (PTMs) was found associated with metabolic, immune, and inflammatory processes. For purpose of investigating the proteomic profile and functions of kmal in pSS, liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based analysis and bioinformatics analysis are performed based on twenty-eight pSS patients versus twenty-seven healthy controls (HCs). A total of 331 down-regulated proteins and 289 up-regulated proteins are observed in differentially expressed proteins (DEPs) of pSS. We discover the expression of transforming growth factor beta-1 (TGFB1) and CD40 ligand downregulate which enriches in the inflammatory associated pathway. Expression of signal transducer and activator of transcription 1-alpha/beta (STAT1) show upregulation and enrich in type I interferon signaling pathway and IL-27-mediated signaling pathway. In differentially malonylated proteins (DMPs) of pSS, we identify 3 proteins are down-regulated in 7 sites and 18 proteins are up-regulated in 19 sites. Expression of malonylated integrin-linked kinase (ILK) significantly enrich in the focal adhesion pathway. Together, our data provide evidence that downregulation of TGFB1 and CD40LG play a critical role in the inflammatory process of pSS, while upregulation of STAT1 may be associated with IL-27 immunity and pSS immune dysfunction. Moreover, kmal modification at the kinase domain of ILK may destabilize ILK that thus contributing to pSS pathogenies by regulating the focal adhesion pathway. SIGNIFICANCE: Our research offered the first characterization of Kmal, a newly identified form of lysine acylation in pSS, as well as proteomic data on individuals with pSS. In this study, we found that several key DMPs were associated with focal adhesion pathway, which contributes to the development of pSS. The present results provide an informative dataset for the future exploration of Kmal in pSS.


Assuntos
Interleucina-27 , Síndrome de Sjogren , Humanos , Síndrome de Sjogren/metabolismo , Lisina/metabolismo , Cromatografia Líquida , Proteômica/métodos , Espectrometria de Massas em Tandem
15.
Immun Inflamm Dis ; 11(7): e936, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37506142

RESUMO

INTRODUCTION: Sjögren's disease (SjD) is a chronic autoimmune disease characterized by the loss of the secretory function of the exocrine glands. At present, drugs that can both correct the immune imbalance and improve exocrine gland function are needed. Meanwhile, vasoactive intestinal peptide (VIP) has been reported as a candidate with anti-inflammatory and immunoregulatory properties for treating autoimmune diseases. METHODS: Nonobese diabetic (NOD) mice and the primary splenic lymphocyte cells (SPLCs) were used to construct the SS model. The therapeutic effects of VIP for SjD by evaluating water consumption, histopathology, T cell subsets, and related cytokines. RT-qPCR and Western blot analysis were used to identify the expression of the PTEN/PI3K/AKT pathway. RESULTS: We found that VIP therapy in NOD mice could increase the expression of PTEN and VIP/VPAC1 receptor, as well as decrease the PI3K/AKT pathway. In vitro, the results showed that the PTEN knockdown decreased the Treg/Th17 ratio and enhanced the phosphorylated PI3K/AKT pathway, which were reversed with VIP treatment. CONCLUSIONS: VIP exerts potential therapeutic action in SjD by upregulating PTEN through the PI3K/AKT pathway and Treg/Th17 cell balance.


Assuntos
Doenças Autoimunes , Síndrome de Sjogren , Camundongos , Animais , Peptídeo Intestinal Vasoativo/farmacologia , Peptídeo Intestinal Vasoativo/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Síndrome de Sjogren/tratamento farmacológico , Síndrome de Sjogren/metabolismo
16.
Cells ; 12(10)2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37408193

RESUMO

Regulatory T cells (Tregs) play a key role in maintaining immune balance and regulating the loss of self-tolerance mechanisms in various autoimmune diseases, including primary Sjögren's syndrome (pSS). With the development of pSS primarily in the exocrine glands, lymphocytic infiltration occurs in the early stages, mainly due to activated CD4+ T cells. Subsequently, in the absence of rational therapy, patients develop ectopic lymphoid structures and lymphomas. While the suppression of autoactivated CD4+ T cells is involved in the pathological process, the main role belongs to Tregs, making them a target for research and possible regenerative therapy. However, the available information about their role in the onset and progression of this disease seems unsystematized and, in certain aspects, controversial. In our review, we aimed to organize the data on the role of Tregs in the pathogenesis of pSS, as well as to discuss possible strategies of cell therapy for this disease. This review provides information on the differentiation, activation, and suppressive functions of Tregs and the role of the FoxP3 protein in these processes. It also highlights data on various subpopulations of Tregs in pSS, their proportion in the peripheral blood and minor salivary glands of patients as well as their role in the development of ectopic lymphoid structures. Our data emphasize the need for further research on Tregs and highlight their potential use as a cell-based therapy.


Assuntos
Doenças Autoimunes , Síndrome de Sjogren , Humanos , Linfócitos T Reguladores , Síndrome de Sjogren/metabolismo , Doenças Autoimunes/metabolismo
17.
Adv Biol (Weinh) ; 7(12): e2300173, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37409392

RESUMO

Sjogren's syndrome is an autoimmune disease in middle and old-aged women with a dry mucosal surface, which is caused by the dysfunction of secretory glands, such as the oral cavity, eyeballs, and pharynx. Pathologically, Sjogren's syndrome are characterized by lymphocyte infiltration into the exocrine glands and epithelial cell destruction caused by autoantibodies Ro/SSA and La/SSB. At present, the exact pathogenesis of Sjogren's syndrome is unclear. Evidence suggests epithelial cell death and the subsequent dysfunction of salivary glands as the main causes of xerostomia. This review summarizes the modes of salivary gland epithelial cell death and their role in Sjogren's syndrome progression. The molecular mechanisms involved in salivary gland epithelial cell death during Sjogren's syndrome as potential leads to treating the disease are also discussed.


Assuntos
Síndrome de Sjogren , Xerostomia , Feminino , Humanos , Pessoa de Meia-Idade , Idoso , Síndrome de Sjogren/metabolismo , Síndrome de Sjogren/patologia , Glândulas Salivares/patologia , Autoanticorpos , Xerostomia/complicações , Células Epiteliais/metabolismo , Células Epiteliais/patologia
18.
Front Immunol ; 14: 1183195, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275849

RESUMO

Introduction: Sjögren's syndrome (SS) is a systemic autoimmune disease, which affects the exocrine glands leading to glandular dysfunction and, particularly, symptoms of oral and ocular dryness. The aetiology of SS remains unclear, and the disease lacks distinctive clinical features. The current diagnostic work-up is complex, invasive and often time-consuming. Thus, there is an emerging need for identifying disease-specific and, ideally, non-invasive immunological and molecular biomarkers that can simplify the diagnostic process, allow stratification of patients, and assist in monitoring the disease course and outcome of therapeutic intervention in SS. Methods: This systematic review addresses the use of proteomics and miRNA-expression profile analyses in this regard. Results and discussion: Out of 272 papers that were identified and 108 reviewed, a total of 42 papers on proteomics and 23 papers on miRNA analyses in saliva, blood and salivary gland tissue were included in this review. Overall, the proteomic and miRNA studies revealed considerable variations with regard to candidate biomarker proteins and miRNAs, most likely due to variation in sample size, processing and analytical methods, but also reflecting the complexity of SS and patient heterogeneity. However, interesting novel knowledge has emerged and further validation is needed to confirm their potential role as biomarkers in SS.


Assuntos
MicroRNAs , Síndrome de Sjogren , Humanos , Síndrome de Sjogren/diagnóstico , Síndrome de Sjogren/genética , Síndrome de Sjogren/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteômica/métodos , Saliva/metabolismo , Biomarcadores
19.
Free Radic Biol Med ; 205: 116-128, 2023 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-37286044

RESUMO

The elevated level of interferon-γ (IFN-γ) in Sjogren's syndrome (SS) triggers salivary gland epithelial cells (SGEC) death. However, the underlying mechanisms of IFN-γ-induced SGEC death modes are still not fully elucidated. We found that IFN-γ triggers SGEC ferroptosis via Janus kinase/signal transducer and activator of transcription 1 (JAK/STAT1)-mediated inhibition of cystine-glutamate exchanger (System Xc-). Transcriptome analysis revealed that ferroptosis-related markers are differentially expressed in SS human and mouse salivary glands with distinct upregulation of IFN-γ and downregulation of glutathione peroxidase 4 (GPX4) and aquaporin 5 (AQP5). Inducing ferroptosis or IFN-γ treatment in the Institute of cancer research (ICR) mice aggravated and inhibition of ferroptosis or IFN-γ signaling in SS model non-obese diabetic (NOD) mice alleviated ferroptosis in the salivary gland and SS symptoms. IFN-γ activated STAT1 phosphorylation and downregulated system Xc- components solute carrier family 3 member 2 (SLC3A2), glutathione, and GPX4 thereby triggering ferroptosis in SGEC. JAK or STAT1 inhibition in SGEC rescued IFN-γ-downregulated SLC3A2 and GPX4 as well as IFN-γ-induced cell death. Our results indicate the role of ferroptosis in SS-related death of SGEC and SS pathogenicity.


Assuntos
Ferroptose , Síndrome de Sjogren , Animais , Humanos , Camundongos , Células Epiteliais/metabolismo , Ferroptose/genética , Interferon gama/metabolismo , Camundongos Endogâmicos NOD , Glândulas Salivares/metabolismo , Síndrome de Sjogren/genética , Síndrome de Sjogren/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Janus Quinases/metabolismo
20.
RMD Open ; 9(2)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37137540

RESUMO

OBJECTIVES: Aim of this study was to investigate the expression of interleukin (IL)-40, a new cytokine associated with B cells homoeostasis and immune response, in primary Sjögren syndrome (pSS) and in pSS-associated lymphomas. METHODS: 29 patients with pSS and 24 controls were enrolled. Minor salivary gland (MSG) biopsies from patients, controls and parotid gland biopsies from pSS-associated lymphoma were obtained. Quantitative gene expression analysis by TaqMan real-time PCR and immunohistochemistry for IL-40 were performed on MSG. MSG cellular sources of IL-40 were determined by flow-cytometry and immunofluorescence. Serum concentration of IL-40 was assessed by ELISA and cellular sources of IL-40 were determined by flow-cytometry. An in vitro assay with recombinant IL-40 (rIL-40) was performed to detect the effect on cytokine production from peripheral blood mononuclear cells (PBMCs). RESULTS: IL-40 was significantly increased in the lymphocytic infiltrated MSG of patients with pSS and correlated with focus score and with IL-4 and transforming growth factor-ß expression. In addition, IL-40 was increased in the serum of pSS and its levels correlated with the EULAR Sjögren's Syndrome Disease Activity Index score. B cells from patients were shown to be the major source of IL-40 at both tissue and peripheral level. PBMCs from patients, exposed to rIL-40 in vitro, released proinflammatory cytokines, specifically interferon-γ from B cells and T-CD8+ and tumour necrosis factor-α and IL-17 from both T-CD4+ and T-CD8+. IL-40 expression in parotid glands of pSS-associated lymphomas was also increased. Moreover, IL-40-driven NETosis was evidenced in neutrophils obtained from pSS. CONCLUSION: Our results suggest that IL-40 may play a role in pSS pathogenesis and pSS-associated lymphomas.


Assuntos
Síndrome de Sjogren , Humanos , Síndrome de Sjogren/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Glândulas Salivares/metabolismo , Interleucinas/metabolismo , Inflamação , Citocinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...